Index


$\cdot$ : Notations
$\times$ : Notations
$!$ : Notations
$\vert$ : Notations
$\vert\ldots\rangle$ : Notations
$\langle\ldots\vert$ : Notations
$\uparrow$ : Notations
$\downarrow$ : Notations
$\prod$ : 2.3 | Notations | Notations
$\int$ : Notations
$\to$ : Notations
$\vec{\phantom{a}}$ : Notations
$\widehat{\phantom{a}}$ : Notations
$'$ : Notations
$\nabla$ : Notations
$\mathop{\Box}\nolimits $ : Notations
$^*$ : Notations
$\raisebox{.3pt}{$<$}$ : Notations
$\raisebox{-.3pt}{$\leqslant$}$ : Notations
$\langle\ldots\rangle$ : Notations
$\raisebox{.3pt}{$>$}$ : Notations
$\raisebox{-.5pt}{$\geqslant$}$ : Notations
$[\ldots]$ : Notations
$\vphantom0\raisebox{1.5pt}{$=$}$ : Notations
$\vphantom0\raisebox{1.5pt}{$\equiv$}$ : Notations
$\vphantom0\raisebox{1.1pt}{$\approx$}$ : Notations
$\vphantom0\raisebox{1.5pt}{$\sim$}$ : Notations
$\propto$ : Notations
$\alpha$ : Notations
$\beta$ : Notations
$\Gamma$ : Notations
$\gamma$ : Notations
$\Delta$ : Notations
$\delta$ : Notations
$\partial$ : Notations
$\epsilon$ : Notations
$\epsilon_0$ : Notations
$\varepsilon$ : Notations
$\eta$ : Notations
$\Theta$ : Notations
$\theta$ : Notations
$\vartheta$ : Notations
$\kappa$ : Notations
$\Lambda$ : Notations
$\lambda$ : Notations
$\mu$ : Notations
$\nu$ : Notations
$\xi$ : Notations
${\mit\Pi}$ : Notations
$\pi$ : Notations
$\tilde\pi $ : Notations
$\rho$ : Notations
$\sigma$ : Notations
$\tau$ : Notations
$\Phi$ : Notations
$\phi$ : Notations
$\varphi$ : Notations
$\chi$ : Notations
$\Psi$ : Notations
$\psi$ : Notations
$\Omega$ : Notations
$\omega$ : Notations
21 cm line
derivation : A.38.5
intro : A.38.1

$A$ : Notations
Å : Notations
$a$ : Notations
$a_0$ : Notations
Abramowitz and Stegun (1965) : A.6.2 | A.6.2 | A.27 | A.29 | D.36.2.1 | D.78 | References
absolute temperature : 6.5 | Notations
absolute value : 2.1 | Notations
absolute zero
nonzero energy : 4.1.3
requires ground state : 11.1
absorbed dose : 14.6.2
absorption and emission
incoherent radiation : 7.8
absorptivity : 6.8
acceleration
in quantum mechanics : 7.2.1
acceptors
semiconductors : 6.23
actinides : 5.9.7
actinoids : 5.9.7
action : A.1.3
relativistic : 1.3.2
activation energy
nuclear fission : 14.14.1
radicals : 5.2.6
active view : A.19.1
activity : 14.6.2
specific : see decay rate
adiabatic
disambiguation : Notations
quantum mechanics : 7.1.5
thermodynamics : 11.10
adiabatic surfaces : 9.2.3
adiabatic theorem
derivation : D.34
derivation and implications : A.16
intro : 7.1.5
adjoint : Notations
matrices : Notations
Aharoni (2000) : N.22 | N.22 | References
Aharonov-Bohm effect : 13.1
Airy functions
application : A.27
connection formulae : A.29
graphs : A.29
software : A.27
alkali metals : 5.9.7
alkaline metals : 5.9.7
allowed transition
intro : 7.4.3
allowed transitions
beta decay : 14.19.4.1
alpha : see $\alpha$
alpha decay : 14.4
data : 14.11.1
definition : 14.4
Gamow/Gurney and Condon theory : 14.11.1
overview of data : 14.4
$Q$-value : 14.19.3
quantum mechanical tunneling : 14.11
alpha particle : 14.11
ammonia molecule : 5.3
amplitude : Notations
quantum : 3.1
angle : Notations
angular frequency : 7.10.4
angular momentum : 4.2
addition : 12.7
Clebsch-Gordan coefficients : 12.7
advanced treatment : 12.
combination
intro : 7.4.2
component : 4.2.2
eigenfunctions : 4.2.2
eigenvalues : 4.2.2
conservation in decays : 7.4.2
definition : 4.2.1
fundamental commutation relations
as an axiom : 12.2
intro : 4.5.4
ladder operators : 12.3
ladders : 12.3
normalization factors : 12.5
nuclei
data : 14.15
operator
Cartesian : 4.2.1
possible values : 12.4
spin : 5.4
square angular momentum : 4.2.3
eigenfunctions : 4.2.3
eigenvalues : 4.2.3
symmetry and conservation : 7.3
uncertainty : 4.2.4
anions : 6.21.6
anomalous magnetic moment : 13.4
nucleons
pion explanation : 14.3
anti-bonding : 10.4
antibonding state
intro : 5.3
anticommutator : A.15.2
antilinear operator : A.19.2
antiparticles
move backward in time : A.14
antisymmetrization requirement : 5.6
graphical depiction : 11.2
indistinguishable particles : 11.2
number of terms : 5.7
using groupings : 5.7
using occupation numbers : A.15.1
using Slater determinants : 5.7
antiunitary operator : A.19.2
astronomy
spectral analysis : 6.27.1
asymptotic freedom
quarks : 7.5.2
atomic mass
conversion to nuclear mass : 14.7
versus nuclear mass : 14.19.3
atomic mass unit : 14.7
atomic matrix element : 7.7.2
atomic number : 5.9 | 14.4
atoms
eigenfunctions : 5.9.2
eigenvalues : 5.9.2
ground state : 5.9.3
Hamiltonian : 5.9.1
Audi et al. (2003) : Acknowledgments | 14.12.6 | References
Auger effect
Meisner : N.35
Auger electrons : 14.20.7
Avalanche diode : 6.26
average
versus expectation value : 4.4.1
Avogadro's number : Notations
axial vector : A.20
azimuthal quantum number : 4.2.3

$B$ : Notations
${\cal B}$ : Notations
$b$ : Notations
Baierlein (1999) : Acknowledgments | 11.1 | 11.2 | 11.14 | D.62 | N.23 | N.25 | References
Balmer transitions : 4.3.3
band gap
and Bragg reflection : N.9
intro : 6.21.1
band structure
crossing bands : 10.4
detailed germanium structure : 6.22.5
nearly-free electrons : 10.6
widely spaced atoms : 10.3.2
band theory
electrons per primitive cell : 6.21.2
intro : 6.21
barn : 14.17.1.2
baryon : 5.4
baryons : 7.5.2
basis : Notations
crystal
intro : 6.22.5
diamond : 10.4
lithium (BCC) : 10.3.1
NaCl (FCC) : 10.2
spin states : 5.5.6
vectors or functions : 2.6
zinc blende (ZnS) : 6.22.5
battery : 6.16
BCC
lithium : 10.3.1
becquerel : 14.6.2
Bell's theorem : 8.2
cheat : 8.2
benzene molecular ring : 5.3
Berry's phase : A.16
Bertulani (2007) : 14.3 | 14.3 | 14.20.3 | A.25.8 | A.25.9 | A.41.2 | A.41.4 | A.44.4 | D.68 | N.14 | References
beryllium-11
nuclear spin : 14.12.6
Bessel functions
spherical : A.6.2
beta : see $\beta$
beta decay : 14.19
beta-plus decay
definition : 14.4
double
explanation : 14.19.2
electron capture : 14.4
electron emission : 14.4
energetics
data : 14.19.1
energy release data : 14.19.1
Fermi theory : A.44
forbidden decays : 14.19.4
intro : 14.4
inverse beta decay : 14.4
K or L capture : 14.4
lone neutron : 14.2.2
momentum conservation : A.44.6
nuclei that do : 14.4
overview of data : 14.4
positron emission : 14.4
$Q$-value : 14.19.3
superallowed decays : 14.19.5
von Weizsaecker predictions : 14.19.2
beta vibration
nuclei : 14.13.4.4
Bethe-von Weizsäcker formula : 14.10.2
Bethe (1964) : A.22.8 | A.22.8 | A.22.8 | A.22.8 | References
Big Bang : A.19.6
binding energy
definition : 4.6.6
hydrogen molecular ion : 4.6.6
hydrogen molecule : 5.2.6
lithium hydride : 5.3
Biot-Savart law : 13.3.5
derivation : D.73.8
blackbody radiation : 11.14.5
intro : 6.8
blackbody spectrum : 6.8
extended derivation : 11.14.5
Blatt and Weisskopf (1952) : 14.20.7 | 14.20.7 | References
Blatt and Weisskopf (1979) : 14.20.7 | 14.20.7 | References
Bloch function
nearly-free electrons : 10.6
one-dimensional lattice : 10.3.5
three-dimensional lattice : 10.3.10
Bloch wave
explanation : 7.10.5
intro : 6.22.1
Bloch's theorem : 10.3.5
body-centered cubic : see BCC
Bohm
EPR experiment : 8.2
Bohr energies : 4.3.3
relativistic corrections : A.38
Bohr magneton : 13.4
Bohr radius : 4.3.4
Boltzmann constant : Notations
Boltzmann factor : 11.5
bond
covalent : 5.11.1
hydrogen : 5.11.3
ionic : 5.11.5
pi : 5.11.2
polar : 5.11.3
sigma : 5.11.1
Van der Waals : 10.1
bond length
definition : 4.6.6
hydrogen molecular ion : 4.6.7
hydrogen molecule : 5.2.6
Born
approximation : A.30.3
Born series : A.31
Born statistical interpretation : 3.1
Born-Oppenheimer approximation
and adiabatic theorem : 7.1.5
basic idea : 9.2.2
derivation : 9.2
diagonal correction : D.51
hydrogen molecular ion : 4.6.1
hydrogen molecule : 5.2.1
include nuclear motion : 9.2.3
spin degeneracy : D.50
vibronic coupling terms : D.51
Borromean nucleus : 14.12.6
Bose-Einstein condensation
derivation : 11.14.1
intro : 6.6
rough explanation : 6.6.1
superfluidity : N.21
Bose-Einstein distribution
blackbody radiation : 11.14.5
intro : 6.8
canonical probability : 11.5
for given energy : 11.4
identify chemical potential : 11.13
intro : 6.7
bosons : 5.4
ground state : 6.4
symmetrization requirement : 5.6
bound states
hydrogen
energies : 4.3.3
boundary conditions
acceptable singularity : N.5
hydrogen atom : D.15
across delta function potential : A.27
at infinity
harmonic oscillator : D.12
hydrogen atom : D.15
impenetrable wall : 3.5.4
radiation : A.27
accelerating potential : A.27
three-dimensional : A.30
unbounded potential : A.27
Bq : 14.6.2
bra : 2.3 | Notations
Bragg diffraction
electrons : 10.7.2
Bragg planes
Brillouin fragment boundaries : 10.3.10
energy singularities : 10.6.2
one-dimensional (Bragg points) : 10.3.7
X-ray diffraction : 10.7.2
Bragg reflection
and band gaps : N.9
Bragg’s law : 10.7.2
Breit-Wigner distribution : 7.6.1
Brillouin zone
first
FCC crystal : 6.22.5
intro : 6.22.4
one-dimensional : 10.3.7
three-dimensional : 10.3.10
broadband radiation
intro : 6.27.2
built-in potential : 6.24

$C$ : Notations
$\POW9,{\circ}$C : Notations
$c$ : Notations
canonical commutation relation : 4.5.3
canonical Hartree-Fock equations : 9.3.4
canonical momentum
canonical quantization : A.15.6
intro : A.12
special relativity : 1.3.2
with a magnetic field : 13.1
canonical probability distribution : 11.5
canonical quantization : A.15.6
canonical momentum : A.15.6
carbon nanotubes
electrical properties
intro : 6.21.4
intro : 5.11.4
Carnot cycle : 11.9
Cartesian tensors : A.4
Casimir force : A.23.4
cat, Schrödinger’s : 8.1
cations : 6.21.6
Cauchy-Schwartz inequality : Notations
causality
relativity : 1.2.2
special relativity : 1.2.3
causality problem : A.15.9
centrifugal stretching : 14.13.4.2
chain reaction : 14.14.1
charge
electrostatics : 13.3.1
charge annihilation operator : 14.18.1
charge conjugation
intro : 7.3
Wu experiment : 14.19.6
charge creation operator : 14.18.1
charge independence
nuclear force : 14.1
charge states : 14.18.1
charge symmetry
example : 14.12.3
nuclear force : 14.1
charge transfer insulators : 6.21.2
chemical bonds : 5.11
covalent pi bonds : 5.11.2
covalent sigma bonds : 5.11.1
hybridization : 5.11.4
ionic bonds : 5.11.5
polar covalent bonds : 5.11.3
promotion : 5.11.4
sp$\POW9,{n}$ hybridization : 5.11.4
chemical equilibrium
constant pressure : 11.12
constant volume : 11.12
chemical potential : 11.12
and diffusion : 6.16
intro : 6.14
and distributions : 11.13
line up
Peltier cooler : 6.28.1
microscopic : 11.13
chi : see $\chi$
Chue (1977) : A.11.2 | References
Ci : 14.6.2
circular polarization
from second quantization : A.23.4
intro : 7.4.3
photon wave function : A.21.6
classical : Notations
Clausius-Clapeyron equation : 11.12
Clebsch-Gordan coefficients : 12.7
and Wigner 3j symbols : N.13
computing using recursion : D.66
explicit expression : D.66
coefficient of performance : 11.9
coefficients of eigenfunctions
evaluating : 4.1.6
give probabilities : 3.4.2
time variation : 7.1.2
collapse of the wave function : 3.4.1
collision-dominated regime : 7.5.3
collisionless regime : 7.5.3
collisions
dual nature : 7.5.3
color force : 14.1
intro : 7.5.2
commutation relation
canonical : 4.5.3
commutator : 4.5
definition : 4.5.2
commutator eigenvalue problems : 12.3
commuting operators : 4.5.1
common eigenfunctions : 4.5.1
comparative half-life : 14.19.4.3
complete set : 2.6
completeness relation : 2.7.1
complex conjugate : 2.1
complex numbers : 2.1
component waves : 7.10.2
components of a vector : 2.2
Condon and Odishaw (1958) : A.25.8 | A.25.9 | A.25.9 | References
Condon and Odishaw (1967) : A.25.1 | A.25.8 | A.25.8 | A.25.8 | A.25.9 | N.14 | References
conduction band
intro : 6.21.1
conductivity
effect of light : 6.27.5
electrical : 6.20
ionic : 6.21.6
configuration mixing : 14.12.5
confinement : 6.12
quarks : 7.5.2
single particle : 3.5.9
conjugate momentum : see canonical momentum
conjugate nuclei : 14.18.2
connection formulae : A.29 | A.29
conservation laws
and symmetries : 7.3
conserved vector current hypothesis : A.44.4
contact potential : 6.16
continuity equation
incompressible flow : A.42.2
contravariant : 1.2.5
conventional cell : 10.3.10
conversion electron : 14.20.7
Copenhagen Interpretation : 3.4.1
correlation energy : 9.3.5.4
cos : Notations
Coulomb barrier : 14.11.1
Coulomb condition
unconventional derivation : A.22.8
Coulomb gage
instead of Lorenz gage : A.22.8
Coulomb gauge : A.21.2
classical electromagnetics : A.36
Coulomb integrals : 9.3.3
Coulomb potential : 4.3.1
Fermi derivation : A.22.8
Koulomb potential
field theory derivation : A.22
Coulomb potential energy
derivation : D.37.4
coupling constant : A.44.2
covalent bond
hydrogen molecular ion : 4.6
covalent solids : 10.4
covariant : 1.2.5
creationists : N.25
cross product : Notations
crystal
basis
diamond : 10.4
NaCl (FCC) : 10.2
ionic conductivity : 6.21.6
lattice : see lattice
lithium (BCC) : 10.3.1
one-dimensional
primitive translation vector : 10.3.5
transparency : 6.27.3
typical semiconductors : 6.22.5
crystal momentum : 6.22.4
conservation : 6.22.4
definition : 7.10.5
light-emitting diodes : 6.27.7
crystals
translation operator : 7.10.5
curie : 14.6.2
curl : Notations | Notations
cylindrical coordinates : Notations

$D$ : Notations
$\vec{D}$ : Notations
${\cal D}$ : Notations
D : Notations
$d$ : Notations
$\vec{d}$ : Notations
${\rm d}$ : Notations
D’Alembertian : A.14 | Notations
Dalton : 14.7
Darwin term : A.38.2
d block
periodic table : 5.9.7
de Broglie relation : 6.18
derivation : A.14
Debye model : 11.14.6
Debye temperature : 11.14.6 | 11.15
decay constant : see decay rate | 14.6.2
decay rate : 14.6.2
not a probability : 7.5.3
physical mechanism : 7.5.3
specific : 7.5.3
deformed nuclei : 14.13.3
degeneracy : 4.1.5
degeneracy pressure : 6.11
degenerate semiconductor : 6.23
delayed neutrons : 14.14.1
Delta : see $\Delta$
delta function : 7.9.1
three-dimensional : 7.9.1
Delta particles
intro : A.41.4
delta : see $\delta$
density
mass : 11.7
molar : 11.7
particle : 11.7
density of modes : 6.3
density of states : 6.3
confined : 6.12
periodic box : 6.19
depletion layer : 6.24
derivative : Notations
Desloge (1968) : Acknowledgments | References
determinant : Notations
deuterium : 14.2.3
deuteron
intro : 14.2.3
OPEP potential : A.41.2
diamagnetic contribution : 13.4
diamond
band gap : 10.4
crystal structure : 6.22.5
intro : 5.11.4
differential cross-section : A.30
dimensional analysis : A.11.2
dineutron
isospin : 14.18.1
not bound : 14.2.3
OPEP potential : A.41.2
diode
semiconductor : 6.24
diode laser : 6.27.7
dipole
classical electromagnetics : 13.3.2
dipole moment
electric
nuclei : 14.17
magnetic
classical : 13.4
nuclei : 14.17
dipole strength
molecules : 10.1
dipole transition : 14.20.2
electric
intro : 7.4.3
magnetic
intro : 7.4.3
dipole transitions
magnetic
Hamiltonian : D.39
diproton
isospin : 14.18.1
not bound : 14.2.3
OPEP potential : A.41.2
Dirac delta function : 7.9.1
three-dimensional : A.22.1
Dirac equation : 12.12
as a system : A.43
conserves parity : A.43
hydrogen atom
low speed approximation : D.82
nonrelativistic limit
no linear algebra : A.43
ultrarelativistic : A.43
Dirac gamma matrices : A.35
Dirac notation : 2.7.1
direct gap semiconductor : 6.22.4
discrete spectrum
versus broadband
intro : 6.27.2
disintegration constant : see decay rate | 14.6.2
disintegration rate : 14.6.2
dispersion relation : 7.10.4
distinguishable particles
intro : 6.6 | 6.6.1
div : Notations
div(ergence) : Notations
divergence theorem : Notations | Notations
donors
semiconductors : 6.23
doping
semiconductors : 6.23
Doppler shift
of light in vacuum : 1.1.4
dose equivalent : 14.6.2
dot product : 2.3
double layer of charges
contact surfaces : 6.16
doublet states : 5.5.6
dpm : 14.6.2
dynamic phase : A.16

$E$ : Notations
${\cal E}$ : Notations
$e$ : Notations
e : Notations
Edmonds (1957) : N.13 | References
effective dose : 14.6.2
effective mass
from equation of motion : 7.10.5
one-dimensional example : 6.22.3
Ehrenfest theorem : 7.2.1
$e^{{{\rm i}}ax}$ : Notations
eigenfunction : 2.5
eigenfunctions
angular momentum component : 4.2.2
atoms : 5.9.2
harmonic oscillator : 4.1.4
hydrogen atom : 4.3.4
impenetrable spherical shell : D.78
linear momentum : 7.9.2
position : 7.9.1
square angular momentum : 4.2.3
eigenvalue : 2.5
eigenvalue problems
commutator type : 12.3
ladder operators : 12.3
eigenvalues
angular momentum component : 4.2.2
atoms : 5.9.2
harmonic oscillator : 4.1.3
hydrogen atom : 4.3.3
impenetrable spherical shell : D.78
linear momentum : 7.9.2
position : 7.9.1
square angular momentum : 4.2.3
eigenvector : 2.5 | Notations
Einstein
dice : 3.4.2
summation convention : 1.2.5
swiped special relativity : 1.1.1
Einstein A and B coefficients : 7.8
Einstein's derivation : D.42
Einstein A coefficients
quantum derivation : A.24
Einstein B coefficients
quantum derivation : D.41
Einstein Podolski Rosen : 8.2
Einstein summation convention
moral justification : A.22.4
electric charge
electron and proton : 4.3.1
electric dipole approximation
origin of the name : 7.7.2
electric dipole operator
intro : 7.7.2
electric dipole transition
intro : 7.4.3
selection rules : 7.4.4
relativistic : 7.4.4
electric moment
nuclei : 14.17
electric multipole
photon states : A.21.7
electric potential
classical derivation : 13.2 | D.73.1
quantum derivation : 13.1
relativistic derivation : 1.3.2
electrical conduction
intro : 6.20
electrochemical potential
definition : 6.13
electromagnetic field
Hamiltonian : 13.1
Maxwell's equations : 13.2
quantization : A.23
electromagnetic potentials
gauge transformation : 1.3.2
electromagnetics
derivation from scratch : A.22
electron
in magnetic field : 13.4
electron affinity : 10.2
Hartree-Fock : 9.3.5.1
electron capture
definition : 14.4
electron emission : 14.4
electron split experiment : 3.1
electronegativity : 5.9.4 | 10.2
electrons
lack of intelligence : 6.11 | 6.25
Elliott (1969) : 14.18.4 | References
Ellis (1999) : Acknowledgments | References
Elton (1966) : A.41.3 | A.43 | D.43 | D.43 | D.43 | D.43.1 | References
emission rate
spontaneous : see decay rate
emissivity : 6.8
energy conservation : 7.1.3
energy spectrum
harmonic oscillator : 4.1.3
hydrogen atom : 4.3.3
energy-time uncertainty equality
derivation : 7.2.2
vindicated : 7.6.1
energy-time uncertainty relation : 7.2.2
decay of a state : 7.6.1
Mandelshtam-Tamm version : A.18
enthalpy : 11.7
enthalpy of vaporization : 11.12
entropy : 11.10
descriptive : 11.8
EPR : 8.2
epsilon : see $\epsilon$,$\varepsilon$
equipartition theorem : 11.15
equivalent dose : 14.6.2
eta : see $\eta$
Euler formula : 2.1
eV : Notations
even-even nuclei : 14.4
Everett, III : 8.6
Everett, III (1973) : Acknowledgments | References
every possible combination : 5.1 | 5.5.1
exchange force mechanism
and two-state systems : 7.5.2
nuclear forces : A.41
exchange integrals : 9.3.3
exchange operator : 5.2.6
exchange terms
twilight terms : 5.3
exchanged
Las Vegas interpretation : 6.1
excited determinants : 9.3.5.4
exciton
intro : 6.27.3
exclusion principle : 5.7
exclusion-principle repulsion : 5.10
expectation value : 4.4
definition : 4.4.2
simplified expression : 4.4.3
versus average : 4.4.1
experimental evidence : A.44.4
exponential function : Notations
exponential of an operator : A.12
exposure : 14.6.2
extended zone scheme : 10.5.2
intro : 6.22.4
extensive variable : 11.7
extreme independent particle model : 14.12.4
extreme single-particle model : 14.12.4

$F$ : Notations
${\cal F}$ : Notations
$f$ : Notations
face centered cubic : see FCC
factorial : Notations
Faraday cage
proposal for nuclei : 14.20.6
fast ion conductors : 6.21.6
f block
periodic table : 5.9.7
F-center
intro : 6.27.4
fermi : 14.10.1
Fermi brim
definition : 6.13
Fermi decay : 14.19.4.1
Fermi energy
definition : 6.13
electrons in a box : 6.10
Fermi factor : 6.13
definition : 6.13
Fermi function
intro : A.44.2
value : A.44.6
Fermi integral
intro : 14.19.4.3 | 14.19.4.3
value : A.44.6
Fermi level
definition : 6.13
line up
Peltier cooler : 6.28.1
Fermi surface
electrons in a box : 6.10
periodic boundary conditions : 6.18
periodic zone scheme : 10.5.2
reduced zone scheme : 10.5.2
Fermi temperature : 11.14.2
Fermi theory
comparison with data : 14.19.5
Fermi theory of beta decay : A.44
Fermi’s golden rule : 7.6.1 | A.44.5
Fermi-Dirac distribution
canonical probability : 11.5
for given energy : 11.4
identify chemical potential : 11.13
intro : 6.13
Fermi-Kurie plot : 14.19.5
fermions : 5.4
antisymmetrization requirement : 5.6
ground state : 6.9
intrinsic parity : A.43
Feynman diagrams : A.31
Feynman et al. (1965) : 1.3.1
Feynman et al. (1965) : Acknowledgments | Acknowledgments | 4.6.5 | 6.28.2 | A.15 | N.22
Feynman slash notation : A.35
Feynman (1965) : Acknowledgments | References
Feynman (1998) : Acknowledgments | Acknowledgments | 6.6.1 | 11.5 | 11.10 | A.8 | A.9 | A.15 | N.21 | N.23 | N.23 | N.23 | References
Feynman (2006) : 13.4 | 13.4 | 14.1 | A.15 | A.31 | A.38.1 | A.38.4 | References
field emission : 6.15
field operators : A.15.9
field strength tensor : A.22.7
filled shells : 12.9
filtering property : 7.9.1
fine structure : A.38.1
hydrogen atom : A.38
fine structure constant : A.38.1
in decay rates : A.25.6
first Brillouin zone
intro : 6.22.4
first law of thermodynamics : 11.1 | 11.7
first-forbidden decays
beta decay : 14.19.4.2
fission
energetics : 14.8
spontaneous
definition : 14.4
overview of data : 14.4
flopping frequency : 13.6.4
Floquet theory : 10.3.5
fluorine-19
nuclear spin : 14.12.6
flux : A.11.4
Fock operator : 9.3.4
Fock space kets
beta decay : A.44.1
Fock state : A.15.1
forbidden decays
beta decay : 14.19.4
forbidden transition
intro : 7.4.3
forbidden transitions
alpha decay : 14.11.3
force
in quantum mechanics : 7.2.1
four-vectors : 1.2.4
Fourier analysis : 10.3.6
Fourier coefficients : D.8
Fourier integral : D.8
Fourier series : D.8
one-dimensional : A.26
three-dimensional : A.26
Fourier transform : 7.10.4 | D.8
one-dimensional : A.26
three-dimensional : A.26
Fourier’s law
heat conduction : A.11.4
Fraunhofer lines : 6.27.1
free path : 6.20
free-electron gas
intro : 6.9
model for crystal structure : 10.5
periodic box
intro : 6.17
specific heat : D.63
Frenkel defect : 6.21.6
$ft$-value : 14.19.4.3
function : 2.2 | 2.2 | Notations
functional : A.2 | Notations
fundamental commutation relations
as an axiom : 12.2
orbital angular momentum : 4.5.4
spin
introduction : 5.5.3
fundamental solution
Poisson equation : A.22.1
fusion
energetics : 14.8 | 14.8

$G$ : Notations
$g$ : Notations
gage property : A.22.4
Galilean transformation : 1.2.1
gallium arsenide
crystal structure : 6.22.5
Galvani potential : 6.16
Gamma : see $\Gamma$
gamma decay
definition : 14.4
gamma function : Notations
gamma matrices
Dirac equation : A.35
gamma rays
intro : 14.20
gamma vibration
nuclei : 14.13.4.4
gamma : see $\gamma$
Gamow theory : 14.11.1
Gamow-Teller decay : 14.19.4.1
gauge theories
basic ideas : A.19.5
gauge transformation
electromagnetic potentials : 1.3.2
Gauss' theorem : Notations
generalized coordinates : A.1.2
intro : A.12
generalized momentum : see canonical
generator of rotations : A.19.1
geometric phase : A.16
germanium
crystal structure : 6.22.5
detailed band structure : 6.22.5
$g$-factor : 13.4
Gibbs free energy : 11.12
microscopic : 11.13
glueballs : 7.5.2
gluons : 7.5.2
Gove and Martin (1971) : A.44 | A.44.6 | References
grad : Notations
grad(ient) : Notations
gradient : Notations
grain : 10.3.1
grain boundaries : 10.3.1
graphene
electrical properties
intro : 6.21.4
graphite
electrical properties
intro : 6.21.4
intro : 5.11.4
gravitons : 7.5.2
gray : 14.6.2
Green's function
Laplacian : 13.3.4
Poisson equation : A.22.1
Griffiths (2005) : Acknowledgments | Acknowledgments | Acknowledgments | Acknowledgments | 4.2.2 | 8.2 | 12.2 | 13.4 | A.37.5 | D.15 | D.21 | D.65 | N.7 | N.23 | References
Griffiths (2008) : A.15 | A.19.5 | A.19.5 | A.21.1 | A.21.2 | A.21.6 | N.2 | References
ground state
absolute zero temperature : 6.5
atoms : 5.9.3
bosons : 6.4
fermions : 6.9
harmonic oscillator : 4.1.4
hydrogen atom : 4.3.3 | 4.3.4
hydrogen molecular ion : 4.6.7
hydrogen molecule : 5.2.6 | 5.5.5 | 5.6
nonzero energy : 4.1.3
group
intro : 1.2.6
group property
coordinate system rotations : D.70
Lorentz transformation : 1.2.6
group theory : 7.3
group velocity : 7.10.4
intro : 7.10.3
Gupta-Bleuler condition : A.22.6
gyromagnetic ratio : 13.4

$H$ : Notations
$h$ : Notations
$\hbar$ : Notations
half-life : 7.5.3 | 14.6.1
halo nucleus : 14.12.6
halogens : 5.9.7
Hamiltonian : 3.3
atoms : 5.9.1
classical : A.1.4
electromagnetic field : 13.1
gives time variation : 7.1.1
harmonic oscillator : 4.1.1
partial : 4.1.2
hydrogen atom : 4.3.1
hydrogen molecular ion : 4.6.1
hydrogen molecule : 5.2.1
in matrix form : 5.8
numbering of eigenfunctions : 3.3
one-dimensional free space : 7.10.1
relativistic, nonquantum : 1.3.2
Hamiltonian dynamics
relation to Heisenberg picture : A.12
Hamiltonian perturbation coefficients : A.37.1
Hankel functions
spherical : A.6.2
harmonic functions : D.14.3
harmonic oscillator : 4.1
classical frequency : 4.1
eigenfunctions : 4.1.4
eigenvalues : 4.1.3
energy spectrum : 4.1.3
ground state : 4.1.4
Hamiltonian : 4.1.1
partial Hamiltonian : 4.1.2
particle motion : 7.11.4
harmonic polynomials : 4.2.3
Hartree product : 5.7 | 9.3.1
intro : 6.1
Hartree-Fock : 9.3
Coulomb integrals : 9.3.3
exchange integrals : 9.3.3
restricted
closed shell : 9.3.1
open shell : 9.3.1
unrestricted : 9.3.1
heat : 6.5 | 11.7
heat capacity
valence electrons : 6.13
heat conduction
electrons : 6.21.5
heat flux density
including Peltier effect : A.11.4
omit density : A.11.4
heavy water : 14.4
Heisenberg
uncertainty principle : 3.2
uncertainty relationship : 4.5.3
helicity
definition : A.43
photon : A.21.6
helion : 14.4
helium
Bose-Einstein condensation : 6.6
helium ionization energy : A.37.2
Hellmann-Feynman theorem : A.37.1
Helmholtz decomposition : A.22.8
Helmholtz equation : D.31
Green's function solution : D.31
Helmholtz free energy : 11.12
microscopic : 11.13
Hermitian conjugate : 2.7.1
Hermitian conjugates
creation and annihilation operators : A.15.2
Hermitian matrices : Notations
Hermitian operators : 2.6
hexacontatetrapole transition : 14.20.2
hexadecapole transition : 14.20.2
hidden variables : 3.4.2 | 8.2
hidden versus nonexisting : 4.2.4
hieroglyph : 10.7.1 | A.38.4
hole
nuclear shell model : 14.12.3
holes
in shells : 12.9
light, heavy, split-off : 7.10.5
semiconductors
holes per state : 6.23
holes per unit volume : 6.23
intro : 6.21.3
Holstein (2001) : 10.1 | References
Huang (2007) : 7.5.2 | 8.4 | References
Hund's rules : 10.7.1
hybridization : 5.11.4
hydrogen
metallic : 6.21.2
nonmetal : 6.21.2
hydrogen atom : 4.3
eigenfunctions : 4.3.4
eigenvalues : 4.3.3
energy spectrum : 4.3.3
ground state : 4.3.3 | 4.3.4
Hamiltonian : 4.3.1
relativistic corrections : A.38
hydrogen bonds : 5.11.3 | 10.1
hydrogen molecular ion : 4.6
bond length : 4.6.7
experimental binding energy : 4.6.7
ground state : 4.6.7
Hamiltonian : 4.6.1
shared states : 4.6.4
hydrogen molecule : 5.2
binding energy : 5.2.6
bond length : 5.2.6
ground state : 5.2.6 | 5.5.5 | 5.6
Hamiltonian : 5.2.1
hyperfine splitting : A.38
hypersphere : Notations

$I$ : Notations
$\Im$ : Notations
${\cal I}$ : Notations
$i$ : 2.2 | Notations
${\hat\imath}$ : Notations
${\rm i}$ : 2.1 | Notations
reciprocal : 2.1
ideal gas
quantum derivation : 11.14.4
thermodynamic properties : 11.12
ideal gas law : 11.14.4
ideal magnetic dipole : 13.3.2
ideality factor : 6.24
identical particles : 5.6
identity operator : 2.7.1
iff : 2.3 | Notations
imaginary part : 2.1
impact parameter : A.30
impurities
ionic conductivity : 6.21.6
optical effects : 6.27.4
incoherent radiation
absorption and emission : 7.8
incompressibility
intro : 6.11
independent particle model : 14.12.4
index notation : Notations
intro : 1.2.5
indirect gap semiconductor : 6.22.4
indistinguishable
definition : A.15.1
indistinguishable particles : 11.2
(anti) symmetrization requirement : 11.2
intro : 6.6 | 6.6.1
inner product
multiple variables : 2.7.2
inner product of functions : 2.3
inner product of vectors : 2.3
insulated system : 11.10
insulators
examples : 6.21.2
integer : Notations
integral Schrödinger equation : A.13
intelligent designers : N.25
intensive variable : 11.7
intermediate vector bosons : 7.5.2
internal conversion : 14.20.7
definition : 14.4
intro : 14.20
internal conversion coefficient : 14.20.7
internal energy : 11.7
internal pair production
intro : 14.20
internal transition
definition : 14.4
interpretation
interpretations : 3.4.1
many worlds : 8.6
orthodox : 3.4
relative state : 8.5
statistical : 3.4
interstitials
ionic conductivity : 6.21.6
interval
special relativity : see space-time interval
intrinsic semiconductor : 6.23
intrinsic state
nuclei : 14.13.4.1
inverse : Notations
inverse beta decay
definition : 14.4
inversion
parity operator : 7.3
ionic bonds : 5.11.5
ionic conductivity : 6.21.6
ionic molecules : 10.2
ionic solids : 10.2
ionization : 4.3.3
ionization energy : 10.2
Hartree-Fock : 9.3.5.1
helium : A.37.2
hydrogen atom : 4.3.3
irrotational : Notations
gradient of a scalar : Notations
vector potential : A.22.8
irrotational flow : A.42.2
islands of isomerism : 14.20.3
iso : Notations
isobar
nuclei : 14.4
isobaric analog states : 14.18.1
isobaric multiplets : 14.18.1
isobaric spin : 14.18
isolated : Notations
isolated system : 11.10
isomer : 14.20.3
isomeric transition
definition : 14.4
isospin : 14.18
beta decay : A.44.1
isothermal atmosphere : 6.14
isotones : 14.4
isotope : 14.4
isotopic spin : 14.18
i-spin : 14.18

$J$ : Notations
$j$ : Notations
${\hat\jmath}$ : Notations

$K$ : Notations
${\mathscr K}$ : Notations
K : Notations
$k$ : Notations
${\hat k}$ : Notations
$k_{\rm B}$ : Notations
kappa : see $\kappa$
K-capture
definition : 14.4
Kelvin coefficient : 6.28.3
Kelvin heat : 6.28.3
Kelvin relationships
thermoelectrics : A.11.6
intro : 6.28.3
ket : 2.3 | Notations
ket notation
spherical harmonics : 4.2.3
spin states : 5.4
kinetic energy
nuclear decay : 14.19.3
operator : 3.3
kinetic energy operator
in spherical coordinates : 4.3.1
Kittel (1996) : Acknowledgments | Acknowledgments | 6.22.5 | 10.3.10 | A.11.1 | A.15 | References
Klein-Gordon equation : 12.12 | A.14
kmol : Notations
Koch and Holthausen (2000) : N.18 | N.18 | N.18 | References
Koopman's theorem : 9.3.5.1
Kramers relation : D.84
Krane (1988) : Acknowledgments | 7.4.1 | 14.1 | 14.2.3 | 14.3 | 14.10.1 | 14.11.2 | 14.11.2 | 14.12.2 | 14.12.2 | 14.12.4 | 14.12.5 | 14.13.2 | 14.13.4.1 | 14.13.4.1 | 14.13.4.2 | 14.17.2.3 | 14.19.3 | 14.19.4.1 | 14.19.5 | 14.19.6 | 14.20.2 | 14.20.2 | 14.20.3 | A.25.8 | A.25.9 | A.40.1 | A.41.4 | A.44.4 | D.68 | D.79 | References

$L$ : Notations
${\cal L}$ : Notations
L : Notations
$l$ : Notations
$\ell$ : Notations
$\pounds $ : Notations
ladder operators
angular momentum : 12.3
Lagrangian
for classical fields : A.22.2
relativistic : 1.3.2
simplest case : A.1.1
Lagrangian density : A.1.5
example : A.22.2
Lagrangian dynamics
for classical fields : A.22.2
Lagrangian mechanics : A.1
Lagrangian multipliers
derivations : D.48
for variational statements : 9.1.3
Lamb shift : A.38 | A.38.4
Lambda : see $\Lambda$
lambda : see $\lambda$
Landé $g$-factor : A.38.3
lanthanides : 5.9.7
lanthanoids : 5.9.7
Laplace equation : D.73.2
solution in spherical coordinates : A.42.2
solutions in spherical coordinates : D.14.3
Laplacian : Notations
Larmor frequency
definition : 13.6.2
Larmor precession : 13.6.3
laser
operating principle : 7.7
laser diode : 6.27.7
latent heat of vaporization : 11.12
lattice
diamond : 10.4
FCC : 10.2
primitive vectors : 6.22.5
intro : 10.2
lithium (BCC) : 10.3.1
NaCl : 10.2
one-dimensional : 10.3.2
primitive translation vector : 10.3.5
primitive translation vectors
diamond : 10.4
reciprocal : see reciprocal lattice
translation operator : 7.10.5
unit cell : 10.2
zinc blende (FCC) : 6.22.5
law of Dulong and Petit : 11.15
law of mass action
semiconductors : 6.23
L-capture
definition : 14.4
Lebesgue integration : A.26
LED : 6.27.7
length of a vector : 2.3
Lennard-Jones potential : 10.1
Casimir-Polder : 10.1
lifetime : 7.5.3 | 14.6.1
light wave
plane
terminology : 7.7.1
light waves
classical : 13.2
light-cone
special relativity : 1.2.3
light-emitting diode : 6.27.7
light-emitting diodes
crystal momentum : 6.27.7
$\lim$ : Notations
linear combination : Notations
linear dependence : Notations
linear independence : Notations
linear momentum
classical : 3.2
eigenfunctions : 7.9.2
eigenvalues : 7.9.2
operator : 3.3
symmetry and conservation : 7.3
linear polarization
from Maxwell's equations : 13.2
from second quantization : A.23.4
intro : 7.4.3
photon wave function : A.21.6
liquid drop model
nuclear binding energy : 14.10.2
nuclear radius : 14.10.1
nuclei
intro : 14.10
locality
quantum field theories : A.22.3
localization
absence of : 7.10.2
London forces : 10.1
Casimir-Polder : 10.1
Lorentz factor : 1.1.4
Lorentz force
derivation : D.6
special relativity : 1.3.2
Lorentz invariant
field theories : A.22.4
Lorentz transform
improper : A.4
nonorthochronous : A.4
Lorentz transformation : 1.2
derivation : D.4
group property : 1.2.6
group property derivation : D.5
index notation : 1.2.5
parity transformation : A.4
time-reversal : A.4
Lorentz-Fitzgerald contraction : 1.1.4
Lorentz[ian] profile : 7.6.1
Lorenz condition : A.21.2
classical electromagnetics : A.36
not Lorentz : A.22.5
unconventional derivation : A.22.5
Lorenz gauge : A.21.2
classical electromagnetics : A.36
lowering indices : A.4
luminosity
particle beam : A.30
Lyman transitions : 4.3.3

$M$ : Notations
${\cal M}$ : Notations
M : Notations
$m$ : Notations
$m_{\rm e}$ : Notations
$m_{\rm n}$ : Notations
$m_{\rm p}$ : Notations
Machleidt (2001) : 14.3 | 14.3 | A.41.4 | References
Madelung constant : 10.2
magic numbers
intro : 14.5
shell model : 14.12
magnetic dipole
idealized : 13.3.2
magnetic dipole moment
classical : 13.4
magnetic dipole transition
intro : 7.4.3
selection rules : 7.4.4
relativistic : 7.4.4
magnetic dipole transitions
Hamiltonian : D.39
magnetic moment
nuclei : 14.17
magnetic multipole
photon states : A.21.7
magnetic quantum number : 4.2.2
magnetic spin anomaly : 13.4
magnetic vector potential
classical derivation : D.73.7
in the Dirac equation : D.75
quantum derivation : 13.1
relativistic derivation : 1.3.2
magnitude : 2.1
main group
periodic table : 5.9.7
majority carriers : 6.23
maser
ammonia : 5.3
operating principle : 7.7
mass number : 14.4
mass-energy relation
derivation : 1.3.1
Dirac equation : 12.12
fine-structure : A.38.2
for nuclei : 14.7
Lagrangian derivation : 1.3.2
need for quantum field theory : A.15
matching regions : A.29
mathematicians : 1.2.5 | D.54
matrix : 2.4 | Notations
matrix element : 7.5.3
maximum principle
Laplace equation : D.73.2
Maxwell relations : 11.12
Maxwell's equations : 13.2
derivation from scratch : A.22
Maxwell-Boltzmann distribution
canonical probability : 11.5
for given energy : 11.4
intro : 6.14
mean lifetime : 14.6.2
mean value property
Laplace equation : D.73.2
measurable values : 3.4.1
measurement : 3.4.1
Meisner
credit : N.35
mesic charge : A.41.3
meson : 5.4
mesons : 7.5.2
metalloids : 5.9.7
compared to semimetals : 6.21.4
metals : 10.3
examples : 6.21.2
method of stationary phase : D.44
metric prefixes : Notations
Minkowski metric : A.4
minority carriers : 6.23
mirror nuclei : 14.10.1 | 14.18.2
beta decay : A.44.4
mass difference data : 14.19.1
mirror operator : A.9
molar mass : 11.7
versus molecular mass etc. : Notations
mole : 11.7
molecular mass : 11.7
versus molar mass etc. : Notations
molecular solids : 10.1
molecules
ionic : 10.2
moment
electromagnetic
nuclei : 14.17
momentum conservation
beta decay : A.44.6
momentum space wave function : 7.9.2
integral transform
one-dimensional : A.26
three-dimensional : A.26
Moszkowski estimate : A.25.8
Moszkowski unit : A.25.8
derivation : A.25.8
Moszkowski (1965) : A.25.1 | A.25.3 | A.25.7 | A.25.8 | A.25.8 | A.25.8 | A.25.9 | D.43.2 | N.14 | N.14 | References
Mott insulators : 6.21.2
moving mass : 1.1.2
derivation : 1.3.1
Lagrangian derivation : 1.3.2
mu : see $\mu$
multipole expansion : 13.3.3
multipole transition
intro : 7.4.3

$N$ : Notations
N : Notations
$n$ : Notations
n : Notations
nabla : Notations
nanoionics : 6.21.6
natural : Notations
natural width : 7.4.1
nearly-free electron model : 10.6
negaton : 14.4
negatron : 14.4
neon-19
nuclear spin : 14.12.6
Neumann functions
spherical : A.6.2
neutrino
needed in beta decay : 14.19.3
neutrinos
do not conserve parity : A.43
helicity : A.43
no intrinsic parity : A.43
relativistic theory : A.43
states like screws : A.43
neutron
intro : 14.2.2
mixed beta decay : 14.19.4.1
neutron emission
definition : 14.4
neutron excess : 14.4
neutron stars : 6.11 | 14.4
Newton's second law
in quantum mechanics : 7.2.1
Newtonian analogy : 3.3
Newtonian mechanics : 3.1
in quantum mechanics : 7.2.1
nitrogen-11
nuclear spin : 14.12.6
NMR
spin one-half : 14.17.2.2
noble gas : 5.9.3
noble gases : 5.9.7
noncanonical Hartree-Fock equations : D.54
nonequilibrium thermodynamics : A.11.4
nonexisting versus hidden : 4.2.4
nonholonomic : A.16
Nordheim rules : 14.15.3
norm of a function : 2.3
normal operators
are abnormal : Notations
normalized : 2.3
normalized wave functions : 3.1
n-p-n transistor : 6.25
n-type semiconductor : 6.23
nu : see $\nu$
nuclear decay
overview of data : 14.4
nuclear force : 14.1
nuclear forces
pion exchange mechanism : A.41
nuclear magnetic resonance : 13.6
nuclear magneton : 13.4 | 14.17.2.1
nuclear parity
intro : 14.1
nuclear radius : 14.10.1
nuclear reactions
antiparticles : 14.19.1
nuclear spin
intro : 14.1
nuclei
beta vibration : 14.13.4.4
do not contain electrons : A.44.1
gamma vibration : 14.13.4.4
internal conversion : 14.20.7
intro : 14.4
liquid drop model
intro : 14.10
pairing energy
evidence : 14.9
parity
data : 14.16
intro : 14.12.1
perturbed shell model : 14.12.4
rotational bands : 14.13.4
spin one-half : 14.13.4.3
spin zero : 14.13.4.4
shell model : 14.12
nonspherical nuclei : 14.13.4.2
Rainwater-type justification : 14.12.1
shells
evidence : 14.9
spin
Nordheim rules : 14.15.3
stable odd-odd ones : 14.19.2
unperturbed shell model : 14.12.4
vibrating drop model
derivations : A.42
stability : 14.13.1
vibrational states : 14.13.2
nucleon number : 14.4
nucleons : 14.1

O : Notations
OBEP : A.41.4
oblate spheroid : 14.17.1.2
observable values : 3.4.1
occupation numbers
beta decay : A.44.1
intro : 6.4
single-state : A.15.1
octupole transition : 14.20.2
octupole vibration
nuclei : 14.13.2
odd-odd nuclei : 14.4
odd-particle shell model : 14.12.4
Omega : see $\Omega$
omega : see $\omega$
one-boson exchange potential : A.41.4
one-dimensional free space
Hamiltonian : 7.10.1
one-particle shell model : 14.12.4
one-pion exchange potential : A.41.2
Onsager reciprocal relations : A.11.6
OPEP : A.41.2
intro : 14.3
OPEP potential
introduction : A.41.2
loose derivation : A.41.3
operator
exponential of an operator : A.12
operators : 2.4
angular momentum component : 4.2.2
Hamiltonian : 3.3
kinetic energy : 3.3
in spherical coordinates : 4.3.1
linear momentum : 3.3
position : 3.3
positive (semi)definite : D.33
potential@ energy : 3.3
quantum mechanics : 3.3
square angular momentum : 4.2.3
total energy : 3.3
opposite : Notations
orbital angular momentum
relativistic coupling with spin : A.43
orbitals : 9.3.1
orthodox interpretation : 3.4
orthogonal : 2.3
orthonormal : 2.3
orthonormal matrix
in coordinate rotations : A.3

$P$ : Notations
${\cal P}$ : Notations
${\mathscr P}$ : Notations
P : Notations
$p$ : Notations
p : Notations
parity
alpha decay : 14.11.3
combination
intro : 7.4.2
conservation in decays : 7.4.2
intro : 7.3
nuclei
data : 14.16
intro : 14.12.1
orbital
derivation : D.77
spherical harmonics
derivation : D.14.2
symmetry and conservation : 7.3
violation of conservation : 7.3
parity operator
spatial inversion : 7.3
parity transformation : 7.3
as a Lorentz transformation : A.4
parity violation
Wu experiment : 14.19.6
Parr and Yang (1989) : Acknowledgments | N.18 | References
Parseval identity
Fourier series
one-dimensional : A.26
three-dimensional : A.26
Fourier transform
one-dimensional : A.26
three-dimensional : A.26
partial wave amplitude : A.30.2
partial wave analysis : A.30.1
phase shifts : A.30.2
particle
tensor : A.44.4
particle exchange
symmetry : A.9
partition function : 11.5
Paschen transitions : 4.3.3
passive view : A.19.1
Pasternack relation : D.84
Pauli exclusion principle : 5.7
atoms : 5.9.4
common phrasing : 5.9.4
Pauli repulsion : 5.10
Pauli spin matrices : 12.10
generalized : 12.11
p block
periodic table : 5.9.7
Peltier coefficient : 6.28.1
Peltier effect : 6.28.1
periodic box : 6.17
a tricky version : A.22.8
beta decay : A.44.2
periodic table : 5.9.4
full : 5.9.7
periodic zone scheme : 10.5.2
intro : 6.22.4
permanents : 5.7
permittivity of space : 4.3.1
perpendicular bisector : Notations
perturbation theory
helium ionization energy : A.37.2
second order : A.37.1
time dependent : 7.6
time-independent : A.37
weak lattice potential : 10.6.1
perturbed shell model : 14.12.4
Peskin and Schroeder (1995) : A.15.9 | A.22.3 | A.22.6 | Web | References
phase angle : Notations
phase equilibrium : 11.12
phase shift
partial waves : A.30.2
phase speed : 7.10.2
phenomenological nuclear potentials : 14.3
Phi : see $\Phi$
phi : see $\phi$,$\varphi$
phonons : 11.15
nuclei : 14.13.2
photoconductivity
intro : 6.27.5
photon : 4.3.3 | Notations
energy : 4.3.3
spin value : 5.4
wave function : A.21.1
photons
density of modes : 6.3
photovoltaic cell : 6.27.6
physicists : 1.2.2 | 1.2.4 | 1.2.4 | 1.2.5 | 1.2.5 | 3.4.1 | 3.4.2 | 4.2.2 | 4.2.3 | 4.3.4 | 5.9.7 | 5.9.7 | 6.9 | 6.11 | 6.13 | 6.16 | 6.22.1 | 6.22.4 | 6.22.5 | 6.23 | 6.28.2 | 7.1.5 | 7.2.2 | 7.3 | 7.3 | 7.4.2 | 7.4.3 | 7.4.3 | 7.4.4 | 7.5.2 | 7.5.2 | 7.5.3 | 7.6.1 | 7.7.2 | 7.8 | 9.2.3 | 9.3.5.4 | 10.3.5 | 10.3.10 | 10.7.1 | 13.2 | 13.3 | 13.4 | 13.4 | 14.1 | 14.1 | 14.1 | 14.1 | 14.2.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.4 | 14.6.2 | 14.7 | 14.11.1 | 14.11.2 | 14.12.1 | 14.12.4 | 14.17.1.2 | 14.18.2 | 14.19.6 | 14.20 | 14.20.3 | 14.20.5 | 14.20.7 | 14.20.7 | A.4 | A.4 | A.11.4 | A.19.2 | A.19.5 | A.22.4 | A.22.4 | A.22.4 | A.22.4 | A.22.6 | A.23 | A.25.8 | A.25.9 | A.30 | A.30 | A.30 | A.30.1 | A.30.2 | A.40.4 | A.44.1 | A.44.4 | A.44.4 | N.13 | N.14 | N.18 | N.18 | N.35 | Notations | Notations
hypothetical shortcomings : 1.2.3 | A.22.1
more or less redeemed : 7.5.2 | 7.5.3 | 14.20.1 | D.14.1 | D.16.1
more or less trusted : A.41.3
redeemed : 6.21.1 | 6.22.4 | A.38.1 | A.44.5
unverified shortcomings : A.30.2
pi : see $\pi$
pi bonds : 5.11.2
pion exchange
multiple : A.41.4
pions
intro : 14.3
Plancherel theorem : A.26
Planck's blackbody spectrum : 6.8
Planck's constant : 3.3
Planck-Einstein relation : 4.3.3
derivation : A.14
p-n junction : 6.24
p-n-p transistor : 6.25
point charge
static : 13.3.1
pointer states : 4.3.4
Poisson bracket : A.12
Poisson equation : 13.3.4
fundamental solution : A.22.1
Green's function solution
derivation : D.2
screened
Green's function solution : D.2.2
variational derivation : A.22.1
polar bonds : 5.11.3
polar coordinates : Notations
polar vector : A.20
polariton
Bose-Einstein condensation : 6.6
polarization : see linear polarization, circular polarization
poly-crystalline : 10.3.1
population inversion : 7.7
position
eigenfunctions : 7.9.1
eigenvalues : 7.9.1
operator : 3.3
positive (semi)definite operators : D.33
positon : 14.4
positron emission : 14.4
possible values : 3.4.1
potassium-40
decay modes : 14.19.2
potential : Notations
existence : D.73.1
potential energy
operator : 3.3
potential energy surfaces : 9.2.3
Poynting vector : 13.2
prefixes
YZEPTGMkmunpfazy : Notations
pressure : 11.7
Preston and Bhaduri (1975) : Acknowledgments | 14.3 | 14.12.2 | 14.12.2 | 14.12.2 | 14.12.2 | 14.12.6 | 14.12.6 | 14.13.1 | 14.13.2 | 14.13.4.6 | 14.14.2 | 14.15.2 | 14.15.3 | 14.15.3 | 14.17.2.4 | 14.18.2 | A.25.8 | A.25.9 | A.41.2 | A.41.4 | A.41.4 | A.41.4 | A.41.4 | A.41.4 | D.68 | References
primitive cell : 10.3.10
in band theory : 6.21.2
versus unit cell : 6.22.5
primitive translation vector
one-dimensional : 10.3.5
primitive translation vectors
FCC
intro : 6.22.5
lithium (BCC) : 10.3.10
reciprocal lattice : 10.3.10
primitive vectors : see above
principal quantum number : 4.3.2
principle of relativity : 1.1.3
probabilities
evaluating : 4.1.6
from coefficients : 3.4.2
probability current : A.32
probability density : 5.2.3
probability to find the particle : 3.1
projection operator : 2.7.1
prolate spheroid : 14.17.1.2
promotion : 5.11.4
nuclei : 14.12.6
prompt neutrons : 14.14.1
proper distance : 1.2.2
as dot product : 1.2.4
proper time : 1.2.2
causality : 1.2.3
proton
intro : 14.2.1
proton emission
definition : 14.4
pseudoscalar particle : A.41.4
pseudovector : A.20
pseudovector particle : A.41.4
Psi : see $\Psi$
psi : see $\psi$
p-type semiconductor : 6.23
pure substance : 11.
$p_x$ : Notations
Pythagorean theorem : 1.2.2

$Q$ : Notations
$q$ : Notations
quadrupole moment
electric
intro : 14.2.3
nuclei : 14.17
intrinsic
nuclei : 14.17.2.4
spin one-half : 14.17.2.2
quadrupole transition : 14.20.2
intro : 7.4.3
quadrupole transitions
electric
Hamiltonian : D.39
selection rules : 7.4.4
quadrupole vibration
nuclei : 14.13.2
quality factor : 14.6.2
quantum chromodynamics : 14.1
intro : 7.5.2
quantum confinement : 6.12
single particle : 3.5.9
quantum dot : 3.5.9
density of states : 6.12
quantum electrodynamics
electron g factor : 13.4
Feynman's book : A.15
intro : 7.5.2
quantum field
definition : A.15.9
quantum field theory : A.15
Coulomb potential derivation : A.22.8
Koulomb potential derivation : A.22
quantum interference : 3.1
quantum mechanics
acceleration : 7.2.1
force : 7.2.1
Newton's second law : 7.2.1
Newtonian mechanics : 7.2.1
velocity : 7.2.1
quantum well : 3.5.9
density of states : 6.12
quantum wire : 3.5.9
density of states : 6.12
quark
spin : 5.4
quarks : 7.5.2 | 14.1
Dirac equation : 12.12
proton and neutron : 13.4
$Q$-value
alpha and beta decay : 14.19.3
nuclei : 14.11.2

$R$ : Notations
${\cal R}$ : Notations
$\Re$ : Notations
$r$ : Notations
${\skew0\vec r}$ : Notations
Rabi flopping frequency : 13.6.4
rad : 14.6.2
radiation
emission and absorption : 7.7
quantization : A.23
radiation probability : see decay rate
radiation weighting factor : 14.6.2
radioactivity
intro : 14.4
radium emanation : 14.4
radium X : 14.4
raising indices : A.4
Ramsauer effect : 7.3
random number generator : 3.4.2
rare earths : 5.9.7
RaX : 14.4
Rayleigh formula
partial waves : A.6.3
spherical Bessel functions : A.6.2
RE : 14.4
real part : 2.1
reciprocal : Notations
reciprocal lattice
lithium : 10.3.10
NaCl : 10.3.10
one-dimensional : 10.3.7
primitive vectors : 10.3.10
three-dimensional : 10.3.10
recombination
semiconductors : 6.23
recombination centers : 6.24
reduced mass
hydrogen atom electron : 4.3.1
reduced zone scheme : 10.5.2
intro : 6.22.4
reflection coefficient : 7.13 | 7.13 | A.32
relative state formulation : 8.6
relative state interpretation : 8.5
relativistic corrections
hydrogen atom : A.38
Relativistic effects
Dirac equation : 12.12
relativistic mass : see moving mass
relativistic quantum mechanics
beta decay : A.44.1
relativity : see special relativity | Notations
rem : 14.6.2
residual strong force : 14.1
resistivity
electrical : 6.20 | 6.20
resonance factor : 13.6.4
rest mass : 1.1.2
rest mass energy : 1.1.2
derivation : 1.3.1
restricted Hartree-Fock : 9.3.1
reversibility : 11.9
RHF : 9.3.1
rho : see $\rho$
roentgen : 14.6.2
röntgen : 14.6.2
rot : Notations | Notations
rotational band
nuclei : 14.13.4.2
rotational bands
seenuclei : 14.13.4
Roy Chowdhury and Basu (2006) : 14.7 | 14.10.2 | References

$S$ : Notations
${\cal S}$ : Notations
${\mathscr S}$ : Notations
S : Notations
$s$ : Notations
s : Notations
saturated : 11.12
s block
periodic table : 5.9.7
scalar : Notations
scalar particle : A.41.4
scattering : 7.12
one-dimensional coefficients : 7.13
three-dimensional : A.30
scattering amplitude : A.30
Schirrmacher (2003) : D.28 | References
Schmets and Montfrooij (2008) : 6.6.1 | N.21 | References
Schmidt lines : 14.17.2.3
Schottky defect : 6.21.6
Schottky effect : 6.15
Schrödinger equation : 7.1
failure? : 8.5
integral version : A.13
Schrödinger’s cat : 8.1
second law of thermodynamics : 11.8
second quantization : A.15.6 | A.23
Seebeck coefficient : 6.28.2
Seebeck effect : 6.28.2
seething cauldron : A.23.4
selection rules
derivation : D.39
electric dipole transitions : 7.4.4
relativistic : 7.4.4
electric quadrupole transitions : 7.4.4
intro : 7.4.4
magnetic dipole transitions : 7.4.4
relativistic : 7.4.4
self-adjoint : Notations
self-conjugate nuclei : 14.18.2
self-consistent field method : 9.3.4
semi-conductors
band gap : 10.4
semi-empirical mass formula : 14.10.2
semiconductor
degenerate : 6.23
direct gap : 6.22.4
intrinsic : 6.23
intro : 6.21.3
n and p-type : 6.23
semiconductor laser : 6.27.7 | 6.27.7
semiconductors
compensation : 6.23
conduction electrons per state : 6.23
conduction electrons per volume : 6.23
crystal structure : 6.22.5
doping : 6.23
holes
intro : 6.21.3
holes per state : 6.23
holes per unit volume : 6.23
semimetal
intro : 6.21.4
separation of variables : 4.1.2
for atoms : 5.9.2
linear momentum : 7.9.2
position : 7.9.1
shell model
with pairing : 14.12.4
with perturbations : 14.12.4
shell model of nuclei : 14.12
shielding approximation : 5.9.2
Shockley diode equation : 6.24
SI prefixes : Notations
sievert : 14.6.2
sigma : see $\sigma$
sigma bonds : 5.11.1
silicon
crystal structure : 6.22.5
simple cubic lattice : 10.5.1
sin : Notations
singlet color state : 7.5.2
singlet state : 5.5.6
derivation : 12.6
Sitenko and Tartakovskii (1997) : Acknowledgments | 14.12.2 | 14.13.1 | 14.13.4.1 | 14.13.4.3 | 14.13.4.4 | 14.13.4.6 | 14.17.2.4 | 14.17.2.4 | 14.17.3 | A.42.2 | References
skew-Hermitian : Notations
Slater determinants : 5.7
small perturbation theory : 10.6.1
solar cell : 6.27.6
solar spectrum : 6.27.1
solenoidal : Notations
vector potential : A.22.8
solid angle : A.30 | Notations
infinitesimal
spherical coordinates : Notations
solid electrolytes : 6.21.6
solids : 10.
covalent : 10.4
ionic : 10.2
molecular : 10.1
spectra
intro : 6.27.2
sp$\POW9,{n}$ hybridization : 5.11.4
space charge region : 6.24
space-like
special relativity : 1.2.2
space-time
special relativity : 1.2.4
space-time interval
ambiguous definition : 1.2.2
causality : 1.2.3
spatial inversion
parity operator : 7.3
special relativity : 1.
canonical momentum : 1.3.2
causality : 1.2.3
four-vectors : 1.2.4
dot product : 1.2.4
in terms of momentum : 1.1.2
index notation : 1.2.5
light-cone : 1.2.3
Lorentz force : 1.3.2
Lorentz transformation : 1.2
Lorentz-Fitzgerald contraction : 1.1.4
mass-energy relation : 1.1.2
mechanics
intro : 1.3.1
Lagrangian : 1.3.2
momentum four-vector : 1.3.1
proper distance : 1.2.2
as dot product : 1.2.4
proper time : 1.2.2
rest mass energy : 1.1.2
space-like : 1.2.2
space-time : 1.2.4
space-time interval : 1.2.2
superluminal interaction : 1.2.3
time-dilation : 1.1.4
time-like : 1.2.2
velocity transformation : 1.2.1
specific activity : 14.6.2
specific decay rate : 14.6.1
specific heat
constant pressure : 11.7
constant volume : 11.7
values : 11.15
specific volume : 11.7
molar : 11.7
spectral analysis
intro : 6.27.1
spectral line broadening : 7.4.1
spectrum : Notations
hydrogen : 4.3.3
spherical Bessel functions : A.6.2
spherical coordinates : 4.2.2 | Notations
unit vectors : Notations
volume integral : Notations
spherical Hankel functions : A.6.2
spherical harmonics
derivation : D.65
derivation from the ODE : D.14.1
derivation using ladders : D.65
generic expression : D.14.1
intro : 4.2.3
Laplace equation derivation : D.14.5
parity : D.14.2
spherical Neumann functions : A.6.2
spheroid : 14.17.1.2
Spiegel and Liu (1999) : 3.5.5 | 3.5.5 | 3.5.5 | 4.2.2 | 4.2.3 | 6.8 | 11.14.1 | 11.14.5 | 13.2 | A.36 | A.38.2 | A.44.5 | D.7 | D.8 | D.8 | D.8 | D.8 | D.11 | D.12 | D.12 | D.12 | D.14.1 | D.14.1 | D.14.1 | D.14.1 | D.14.1 | D.15 | D.15 | D.15 | D.15 | D.15 | D.15 | D.15 | D.15 | D.34 | D.36.2.1 | D.36.2.3 | D.36.2.5 | D.36.2.5 | D.41 | D.63 | D.81 | D.81 | References | Notations | Notations | Notations
spin : 5.4
fundamental commutation relations
introduction : 5.5.3
nuclei
data : 14.15
value : 5.4
$x$- and $y$-eigenstates : 12.10
spin down : 5.4
spin orbitals : 9.3.1
spin states
ambiguity in sign : D.69
axis rotation : D.69
spin up : 5.4
spin-orbit interaction
nucleons : 14.12.2
spinor : 5.5.1
spontaneous emission
multiple initial or final states : 7.6.1
quantum derivation : A.24
spontaneous fission : 14.14
Sproull (1956) : Acknowledgments | 6.22.3 | D.29 | N.22 | References
Srednicki (2007) : Acknowledgments | A.15.9 | A.15.9 | A.15.9 | A.15.10 | A.22.3 | References
s state : 4.3.4 | 4.3.4
standard deviation : 4.4
definition : 4.4.1
simplified expression : 4.4.3
standard model : 7.3
Stark effect : A.37.5
stationary states : 7.1.4
statistical interpretation : 3.4
Stech (1952) : A.25.3 | D.43 | D.43 | N.14 | References
Stefan-Boltzmann formula : 11.14.5
Stefan-Boltzmann law : 6.8
steradians : A.30
Stern-Gerlach apparatus : 13.5
stoichiometric coefficient : 11.12
Stokes' theorem : Notations
Stone (2005) : Acknowledgments | Acknowledgments | References
string theory : A.15.9
strong force : 14.1
intro : 7.5.2
superallowed beta decays : A.44.4
superallowed decay
beta decay : 14.19.5
superconductivity : 6.21
Cooper pairs : 6.6
superfluidity
Feynman argument : 6.6.1
superionic conductors : 6.21.6
superluminal interaction
Bell's theorem : 8.2
hidden variables : 8.2
many worlds interpretation : 8.6
quantum : 3.1
do not allow communication : 8.2
produce paradoxes : 8.2
relativistic paradoxes : 1.2.3
surface tension : 14.13.1
symmetrization requirement
fermions : see antisymmetrization
graphical depiction : 11.2
identical bosons : 5.6
indistinguishable particles : 11.2
using groupings : 5.7
using occupation numbers : A.15.1
using permanents : 5.7
symmetry : Notations
Szabo and Ostlund (1996) : Acknowledgments | 9.3.1 | 9.3.1 | 9.3.5 | 9.3.5.1 | 9.3.5.1 | D.54 | N.18 | N.18 | References

$T$ : Notations
${\cal T}$ : Notations
$t$ : Notations
tantalum-180m : 14.20.2
tau : see $\tau$
temperature : 11.1 | Notations
definition : 11.4
Carnot : 11.9
definition using entropy : 11.12
intro : 6.5
tensor particle : A.44.4
tensor potential
deuteron : A.40.4
tensors
compared to linear algebra : A.4
intro : 1.2.5
thermal de Broglie wavelength : 11.14
thermal efficiency : 11.9
thermal equilibrium : 11.
thermionic emission : 6.15
thermocouple : 6.28.2
thermodynamics
first law : 11.7
second law : 11.8
third law : 11.10
thermoelectric generator : 6.28.2
thermoelectrics
figure of merit : A.11.2
macroscopic equations : A.11.4
thermogenerator : 6.28.2
Theta : see $\Theta$
theta : see $\theta$,$\vartheta$
third law of thermodynamics : 11.10
Thomson coefficient : 6.28.3
Thomson effect : 6.28.3
Thomson relationships
thermoelectrics : A.11.6
intro : 6.28.3
throw the dice : 3.4.2
TID : 14.6.2
Tilley and Tilley (1990) : N.21 | N.21 | N.21 | References
time
directionality : 8.7
time symmetry
reservations : A.19.6
time variation
Hamiltonian : 7.1.1
time-dependent perturbation theory : 7.6
time-dilation : 1.1.4
time-like
special relativity : 1.2.2
time-reversal
as a Lorentz transformation : A.4
tin
white and grey : 6.21.2
tissue weighting factor : 14.6.2
$T$-multiplets : 14.18.1
total cross-section : A.30
total energy
operator : 3.3
total ionizing dose : 14.6.2
transistor : 6.25
transition
multipole
selection rules : 14.20.2
multipole names : 14.20.2
quadrupole : see quadrupole transition
transition elements : 5.9.7
transition metals : 5.9.7
transition probability : see decay rate
transition rate
spontaneous : see decay rate
transitions
hydrogen atom : 4.3.3
translation operator
crystals : 7.10.5
transmission coefficient : 7.13 | 7.13 | A.32
transparent crystals : 6.27.3
transpose of a matrix : Notations
transverse gauge
classical electromagnetics : A.36 | A.36
traveling waves : see linear polarization
triakontadipole transition : 14.20.2
triangle inequality : 7.4.2
triple alpha process : 14.8
triple product : Notations
triplet states : 5.5.6
derivation : 12.6
tritium : 14.4
triton : 14.4
tunneling : 7.12.2
field emission : 6.15
Stark effect : A.37.5
WKB approximation : 7.13
Zener diodes : 6.26
turning point : 7.11.3
turning points
WKB approximation : A.28
twilight terms : 5.3
exchange terms : 5.3
Hartree-Fock : 9.3.3
Lennard-Jones/London force : A.33
lithium hydride : 5.3
spontaneous emission : A.24
two state systems
ground state energy : 5.3
time variation : 7.5.2
two-state systems
atom-photon model : A.24

$U$ : Notations
${\cal U}$ : Notations
$u$ : Notations
u : Notations
UHF : 9.3.1
uncertainty principle
angular momentum : 4.2.4
energy : 4.1.4 | 7.1.4
Heisenberg : 3.2
position and linear momentum : 3.2
uncertainty relationship
generalized : 4.5.2
Heisenberg : 4.5.3
unified atomic mass unit : 14.7
unit cell
FCC : 10.2
intro : 10.2
lithium (BCC) : 10.3.1
versus primitive cell : 6.22.5
zinc blende : 6.22.5
unit matrix : Notations
unit vectors
in spherical coordinates : Notations
unitary
Fourier series : A.26
matrix : D.54
time advance operator : A.12
unitary matrix
in coordinate rotations : A.3
unitary operator : A.19.2
unitary operators : Notations
universal gas constant : 11.12 | 11.15
universal mass unit : 14.7
unperturbed shell model : 14.12.4
unrestricted Hartree-Fock : 9.3.1

$V$ : Notations
${\cal V}$ : Notations
$v$ : Notations
$\vec{v}$ : Notations
vacancies
ionic conductivity : 6.21.6
optical effects : 6.27.4
vacuum energy : 8.7 | A.15.1 | A.23.4
seething cauldron : A.23.4
vacuum state : A.15.1
valence band
intro : 6.21.1
values
observable : 3.4.1
Van der Waals forces : 10.1
Casimir-Polder : 10.1
variational calculus
worked out example : A.2
variational method : 4.6.6
helium ionization energy : A.37.2
hydrogen molecular ion : 4.6.6
hydrogen molecule : 5.2.5
variational principle : 9.1
basic statement : 9.1.1
differential form : 9.1.2
Lagrangian multipliers : 9.1.3
vector : 2.2 | Notations
vector bosons : A.20
vector particle : A.41.4
vectorial product : Notations
velocity
in quantum mechanics : 7.2.1
vibrational states
seenuclei : 14.13.2
vibronic coupling terms : D.51
virial theorem : 7.2
virtual work : A.1.3
viscosity : 11.9
Volta potential : 6.16
volume integral
in spherical coordinates : Notations
von Weizsäcker formula : 14.10.2

W : Notations
$w$ : Notations
$\vec{w}$ : Notations
Warburton and Weneser (1969) : 14.20.2 | 14.20.2 | References
warp factor : 1.2.3
wave function : 3.1
multiple particles : 5.1
multiple particles with spin : 5.5.4
with spin : 5.5.1
wave number : 2.5 | 3.5.5 | 7.10.4
Floquet : 10.3.5
Fourier versus Floquet : 10.3.7
one-dimensional Fourier series : A.26
one-dimensional Fourier transform : A.26
wave number vector
and linear momentum : 6.18
Bloch function : 10.3.10
Fourier series : A.26 | A.26
Fourier transform : A.26
wave numbers : 6.2
wave packet
accelerated motion : 7.11.2
definition : 7.10.3
free space : 7.10 | 7.11.1
harmonic oscillator : 7.11.4
partial reflection : 7.12.1
physical interpretation : 7.10.3
reflection : 7.11.3
wave vector
conservation : 6.22.4
weak force
intro : 7.5.2
Weinberg (2010) : 1.2.4 | A.19.2 | A.22.4 | References
Weisskopf estimates : A.25.8
comparison with data : 14.20.5
figures : 14.20.4
Weisskopf unit
derivation : A.25.8
Weisskopf units : A.25.8
well
deuteron : A.40.1
Weyl neutrinos : A.43
width
particle decay : 14.1
width of a state : 7.4.1
Wigner 3j,6j and 9j coefficients : N.13
Wigner-Eckart theorem : N.13
Wigner-Seitz cell : 10.3.10
Wilkinson (1969) : 14.18.1 | 14.18.2 | 14.18.2 | 14.18.3 | References
Wiringa et al. (1995) : A.40.2 | A.40.4 | References
WKB approximation
connection formulae : A.29
WKB connection formulae : A.29
WKB theory : A.28
Woods-Saxon potential : 14.12.1
work function : 6.15
Wronskian : A.32
W.u. : A.25.8

$X$ : Notations
$x$ : Notations
xi : see $\xi$
X-ray diffraction : 10.7.2

$Y$ : Notations
$Y_l^m$ : Notations
$y$ : Notations
Yariv (1982) : Acknowledgments | Acknowledgments | Acknowledgments | Acknowledgments | 4.2.2 | 7.4.1 | 7.5.3 | 13.4 | N.23 | References
yrast line : 14.13.4.4
YSZ : 6.21.6
yttria-stabilized zirconia : 6.21.6
Yukawa potential : A.41.1
loose derivation : A.41.1

$Z$ : Notations
$z$ : Notations
Zee (2003) : A.15 | A.22.1 | A.22.6 | A.43 | References
Zeeman effect : A.37.4
intermediate : A.38.3
weak : A.38.3
Zener diode : 6.26
zero matrix : Notations
zero point energy : 9.2.3
zeroth law of thermodynamics : 11.1
zinc blende
crystal structure : 6.22.5
ZnS : see zinc blende